Orthogonal Nonnegative Tucker Decomposition

نویسندگان

چکیده

In this paper, we study nonnegative tensor data and propose an orthogonal Tucker decomposition (ONTD). We discuss some properties of ONTD develop a convex relaxation algorithm the augmented Lagrangian function to solve optimization problem. The convergence is given. employ on image sets from real world applications including face recognition, representation, hyperspectral unmixing. Numerical results are shown illustrate effectiveness proposed algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Alternating proximal gradient method for sparse nonnegative Tucker decomposition

Multi-way data arises inmany applications such as electroencephalography classification, face recognition, text mining and hyperspectral data analysis. Tensor decomposition has been commonly used to find the hidden factors and elicit the intrinsic structures of the multi-way data. This paper considers sparse nonnegative Tucker decomposition (NTD), which is to decompose a given tensor into the p...

متن کامل

Multifactor sparse feature extraction using Convolutive Nonnegative Tucker Decomposition

Multilinear algebra of the higher-order tensor has been proposed as a potential mathematical framework for machine learning to investigate the relationships among multiple factors underlying the observations. One popular model Nonnegative Tucker Decomposition (NTD) allows us to explore the interactions of different factors with nonnegative constraints. In order to reduce degeneracy problem of t...

متن کامل

Algorithms for Sparse Nonnegative Tucker Decompositions

There is a increasing interest in analysis of large-scale multiway data. The concept of multiway data refers to arrays of data with more than two dimensions, that is, taking the form of tensors. To analyze such data, decomposition techniques are widely used. The two most common decompositions for tensors are the Tucker model and the more restricted PARAFAC model. Both models can be viewed as ge...

متن کامل

Extended HALS algorithm for nonnegative Tucker decomposition and its applications for multiway analysis and classification

Analysis of high dimensional data in modern applications, such as neuroscience, text mining, spectral analysis or chemometrices naturally requires tensor decomposition methods. The Tucker decompositions allow us to extract hidden factors (component matrices) with a different dimension in each mode and investigate interactions among various modes. The Alternating Least Squares (ALS) algorithms h...

متن کامل

Feature Extraction by Nonnegative Tucker Decomposition from EEG Data Including Testing and Training Observations

The under-sample classification problem is discussed for 21 normal childrenand 21 children with reading disability. We first rejected data of one subject in each group and produced 441 sub-datasets including 40 subjects in each. Regarding each sub-dataset, we extracted features through nonnegative Tucker decomposition (NTD) from event-related potentials, and used the leaveone-out paradigm for c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2021

ISSN: ['1095-7197', '1064-8275']

DOI: https://doi.org/10.1137/19m1294708